Skip to main content

Installing the Ubertooth on the Mac mini M1

 For my video project, one of the demonstrations included using an Ubertooth One to scan for Bluetooth and BLE packets. This blog post will cover the installation of the Ubertooth One on the Mac mini M1. The official install guide for Mac devices didn't work very well for me, and I had to install some extra tools in order to get it to work. The examples assume you are using Python 3, and have homebrew installed. 

To begin, follow the instructions found here: https://github.com/greatscottgadgets/ubertooth/wiki/Build-Guide.

Additionally, you may find that you need to install pytq5, numpy, and qtpy. To do this, simply run Python3 pip install pyqt5, numpy, qtpy.

This will install the required libraries needed to run the Ubertooth tools. There are multiple ways to install pip on an OS X device, and I suggest following any of the methods here.

Next, you will need to update the firmware of the device. When downloading the tools, a firmware directory should also have been created. Within this directory, run ubertooth-dfu -d bluetooth_rxtx.dfu -r. This should update the firmware of the device.

Once you have installed the Ubertooth tools and updated the firmware, run ubertooth-specan-ui

to verify that the device is working and that everything is installed correctly. Another helpful site for setup and use is wiki.elvis.science. They have a great guide on setup and Wireshark/crackle use.

To purchase an Ubertooth One, find a retailer on Great Scott Gadgets website.

Comments

Popular posts from this blog

Frag Attacks - A critical Wifi vulnerability

Wifi fragmentation and aggregation attacks (FragAttacks) are a new collection of vulnerabilities in which a threat actor can exfiltrate data or attack victims within radio range. Mathy Vanhoef, a postdoctoral researcher at New York University Abu Dhabi, recently published his paper, Fragment and Forge: Breaking Wi-Fi through Frame Aggregation and Fragmentation , detailing several attack vectors and examining the intricacies of the aggregation vulnerabilities that have been part of the 802.11 standards since the inception in 1997.  Quite interestingly, every device tested was susceptible to one or more of the FragAttacks. While several 802.11 standards make these attacks harder to perform, they can be executed on all devices across all standards. It's a good thing then, that there was a nine-month embargo on information related to these attacks, allowing manufacturers to provide security updates to affected devices. Mathy Vanhoef has also created a website documenting the FragAttack

Using PGPy to encrypt and decrypt files and messages

 PGPy is a library for python that enables the creation, storage, and encryption/decryption of PGP keys and files in python. Recently, in a small project to reacquaint myself with python, I used PGPy for key generation and encryption and decryption. That project can be found in my github at  https://github.com/lpowell . The goal of the project was to use command-line switches to control the program, and to provide basic encryption and decryption capabilities, along with rot13 and base64 encoding.  First, to load in a key use key, _ = pgpy.PGPKey.from_file(keyfilename) . This loads the key from either a binary or ASCII armored file. You can swap out .from_file for .from_blob , if you plan on using a key stored in a string or bytes object rather than a file. In my example code, I pull the key from a file, as I found it to be the simpler method.  Next, you'll need to open a file or create a string or bytes object that contains the message you wish to encrypt. We'll call this file

RFC 791 pt2

 This week's post will cover the operation of the Internet Protocol. Specifically, Time to Live (TOL), Type of Service(TOS), the Header Checksum, and the other remaining options available when transmitting data across IP. While this post will cover the basic operations and provide descriptions of their functions and use, a more technical dive will be saved for next week's post, which will cover the specification section of RFC 791. The final post in this series will cover the security implications of the Internet Protocol, and briefly cover the updates made to the original document and protocol.  Continuing from the last post, there are two main functions of the Internet Protocol. Addressing and Fragmentation. To begin,  the device you use to connect to the internet, or the internet module, uses the addressing function of IP to send and receive data. The internet module reads the address of the datagram and uses it to route to the desired endpoint. This address is carried in th